If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-40=0
a = 20; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·20·(-40)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*20}=\frac{0-40\sqrt{2}}{40} =-\frac{40\sqrt{2}}{40} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*20}=\frac{0+40\sqrt{2}}{40} =\frac{40\sqrt{2}}{40} =\sqrt{2} $
| ,0=6z-12 | | -7a=-11a-60 | | k2=0.49 | | f-2+ 10= 12 | | -x-23=2x+4 | | 3t+8(2t-6=2+14t | | 35-22x+6-18x=12-30x+34 | | 6-2t=8 | | -89=-4s+11 | | 7(3m–1)=(-2) | | 2p=2=6 | | q/2+4=5 | | 4-3|q|=10 | | q/2+4=55 | | 7(x-4)=-4x+140 | | 2d-6=-2 | | 7(3m–1)=-2 | | 5x-17=4x-18 | | 39.39+.50x=110 | | 3y-10y=1 | | 10x+5=30-5x | | 99=x^2-1 | | g5– 19= -10 | | 11=u/3+7 | | /x-5+7=9 | | -9x-28+x=49 | | 4x-7x^2=-8 | | 1366+x+21=180 | | v/3–-10=11 | | 6m=-6+4m | | 2(2k-1)=4(k-2 | | -10=g/4+-9 |